Sharing data for cancer research
Biblio
PET-based dose painting in non-small cell lung cancer: Comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol. 2015;116(2):281-6. doi:10.1016/j.radonc.2015.07.013.
A Validated Prediction Model for Overall Survival From Stage III Non-Small Cell Lung Cancer: Toward Survival Prediction for Individual Patients. Int J Radiat Oncol Biol Phys. 2015;92(4):935-44. doi:10.1016/j.ijrobp.2015.02.048.
Data from: Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicenter in silico ROCOCO trial. 2016. doi:10.17195/candat.2016.04.2.
Data from: Nitroglycerin in non-small cell lung cancer: does it impact tumor hypoxia and tumor perfusion? A window-of-opportunity clinical trial. 2016. doi:10.17195/candat.2016.07.2.
2017-08-28 Reymen - Nitro database HX-4 DCECT clean.zip (20.3 KB)

Data from: Prognostic value of blood-biomarkers related to hypoxia, inflammation, immune response and tumour load in non-small cell lung cancer – a survival model with external validation. 2016. doi:10.17195/candat.2016.04.1.
carvalho-prognostic-biomarkers-NSCLC.xlsx (69.51 KB)
. 
Data from: Quantitative assessment of Zirconium-89 labeled cetuximab using PETCT imaging in patients with advanced head and neck cancer - a theragnostic approach. 2016. doi:10.17195/candat.2016.11.1.
Even_P0037C0006I4475579.ZIP (97.26 MB)
Even_P0037C0006I5879176.ZIP (131.21 MB)
Even_P0037C0006I6042760.ZIP (115.71 MB)
Even_P0037C0006I8991415.ZIP (101.03 MB)




Radiomics Digital Phantom. 2016. doi:10.17195/candat.2016.08.1.
PHANTOM_DICOM.zip (7.73 MB)
GTV_B_DICOM.zip (281.74 KB)
GTV_M_DICOM.zip (175.39 KB)
GTV_O_DICOM.zip (421.42 KB)
. 



Data from: 4DCT imaging to assess radiomics feature stability: an investigation for thoracic cancers. 2017. doi:10.17195/candat.2017.05.1.
Data from: 4DCT imaging to assess radiomics feature stability: an investigation for thoracic cancers. 2017. doi:10.17195/candat.2017.05.1.
Data from: 4DCT imaging to assess radiomics feature stability: an investigation for thoracic cancers. 2017. doi:10.17195/candat.2017.05.1.
Data from: Developing and validating a survival prediction model for NSCLC patients through distributed learning across three countries. 2017. doi:10.17195/candat.2017.02.2.
Jochems-2017-MaastroDataUnbinned.csv (62.76 KB)

Data from: Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. 2017. doi:10.17195/candat.2017.02.1.
Van-Timmeren_2017_cases-001-020.zip (750.99 MB)
Van-Timmeren_2017_cases-021-040.zip (726.98 MB)
Van-Timmeren_2017_cases-041-060.zip (777.6 MB)
Van-Timmeren_2017_cases-061-080.zip (795.72 MB)
Van-Timmeren_2017_cases-081-102.zip (827.01 MB)





Data from: Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. 2017. doi:10.17195/candat.2017.02.1.
Van-Timmeren_2017_cases-001-020.zip (750.99 MB)
Van-Timmeren_2017_cases-021-040.zip (726.98 MB)
Van-Timmeren_2017_cases-041-060.zip (777.6 MB)
Van-Timmeren_2017_cases-061-080.zip (795.72 MB)
Van-Timmeren_2017_cases-081-102.zip (827.01 MB)





Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. International Journal of Radiation Oncology*Biology*Physics. 2017;99(2):344 - 352. doi:10.1016/j.ijrobp.2017.04.021.
Data from: Intensity-modulated proton therapy decreases dose to organs at risk in low-grade glioma patients: results of a multicentric in silico ROCOCO trial. 2018. doi:10.17195/candat.2018.05.1.
CanDat - 2018 Eekers - Data LGG .ods (157.14 KB)
CanDat - 2018 Eekers - Data LGG .xlsx (183.07 KB)


The posterior cerebellum, a new organ at risk?. Clinical and Translational Radiation Oncology. 2018;8:22 - 26. doi:10.1016/j.ctro.2017.11.010.